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Abstract

Given the long follow-up periods that are often required for treatment or intervention studies, the 

potential to use surrogate markers to decrease the required follow-up time is a very attractive goal. 

However, previous studies have shown that using inadequate markers or making inappropriate 

assumptions about the relationship between the primary outcome and surrogate marker can lead to 

inaccurate conclusions regarding the treatment effect. Currently available methods for identifying 

and validating surrogate markers tend to rely on restrictive model assumptions and/or focus on 

uncensored outcomes. The ability to use such methods in practice when the primary outcome of 

interest is a time-to-event outcome is difficult due to censoring and missing surrogate information 

among those who experience the primary outcome before surrogate marker measurement. In this 

paper, we propose a novel definition of the proportion of treatment effect explained by surrogate 

information collected up to a specified time in the setting of a time-to-event primary outcome. Our 

proposed approach accommodates a setting where individuals may experience the primary 

outcome before the surrogate marker is measured. We propose a robust nonparametric procedure 

to estimate the defined quantity using censored data and use a perturbation-resampling procedure 

for variance estimation. Simulation studies demonstrate that the proposed procedures perform well 

in finite samples. We illustrate the proposed procedures by investigating two potential surrogate 

markers for diabetes using data from the Diabetes Prevention Program.
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1. Introduction

A surrogate marker is often defined as a physical measurement such as a biomarker, clinical 

measurement, or psychological test that can be “used in therapeutic trials as a substitute for a 

clinically meaningful endpoint that is a direct measure of how a patient feels, functions, or 

survives and is expected to predict the effect of the therapy.”[1] The quest to identify, 

validate, and use surrogate markers in practice is driven by the potential for such markers to 
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reduce the length of studies that currently require very long follow-up periods. For example, 

studies with outcomes such as cancer diagnosis, diabetes diagnosis, or heart attack often 

require many years of follow-up to precisely estimate an intervention effect. Research 

involving the identification and validation of surrogate markers has been active with much 

novel methodological development and heated debate. In a landmark paper, Prentice [2] 

introduced a criterion for a valid surrogate marker which required that a test for treatment 

effect on the surrogate marker is also a valid test for treatment effect on the primary outcome 

of interest. Since then, numerous approaches have been developed to identify and validate 

surrogate markers and to quantify the “surrogacy” of such markers. For example, motivated 

by the Prentice criterion, Freedman et al. [3] proposed to estimate the proportion of 

treatment effect that is explained by a surrogate marker by examining the change in the 

regression coefficient for treatment when the surrogate marker is added to a specified 

regression model. Wang & Taylor [4] proposed a more flexible model-based approach to 

estimate the proportion of treatment effect explained by defining a quantity that attempts to 

capture what the the effect of the treatment in the treatment group would be if the values of 

the surrogate were distributed as those in the control group. Building from the definition of 

Wang & Taylor [4], Parast et al. [5] proposed a robust estimation procedure to estimate this 

quantity without the requirement of correct model specification. However, none of these 

approaches are able to adequately accommodate settings with time-to-event outcomes.

While the proportion of treatment effect explained by a surrogate marker is intuitively 

appealing, a number of other quantities to assess surrogate markers have been proposed. For 

example, relative effect and adjusted association [6], indirect and direct effects [7], 

dissociative effects, associative effects, average causal necessity, average causal sufficiency, 

and the causal effect predictiveness surface in a principal stratification framework [8, 9, 10, 

11] are some of the alternative quantities that are available. Again however, the majority of 

these currently available methods were developed for settings where the primary outcome is 

fully observable and cannot be easily extended to settings with time-to-event outcomes.

For a survival outcome, T, existing methods largely require restrictive model assumptions 

that may not hold in practice. Lin et al. [12] extended the approach proposed by Freedman et 
al. [3] to the survival setting but showed that it is actually impossible for both of the two 

specified survival models to hold simultaneously. The survival setting is often further 

complicated by the fact that the surrogate marker, S, itself may be missing. That is, the 

individual may be censored or may experience the primary outcome before S is measured, in 

which case S will not be observable and thus, commonly used metrics for surrogacy would 

not be well-defined. When both T and S are subject to censoring, Ghosh [13] proposed 

estimation and inference procedures for the proportion of treatment effect explained by a 

surrogate using an accelerated failure time (AFT) model and demonstrated desirable finite 

sample performance when the AFT model holds. Ghosh [14] proposed estimates of 

quantities to assess the validity of a surrogate marker in a semi-competing risks framework 

such that estimates are derived based on specified copula model and AFT models. However, 

their simulations demonstrate that when the assumed copula model is misspecified, the 

proposed procedure leads to biased estimates that persist with large sample sizes. In the 

principal stratification framework, multiple quantities for evaluating potential surrogate 

markers in a time-to-event outcome setting have been proposed by Conlon et al. [15], using 
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a Gaussian copula model with a Bayesian estimation approach. Gabriel & Gilbert [16] and 

Gabriel et al. [17] rely on flexible yet still model-based procedures using Weibull time-to-

event models for the primary outcome. These methods would yield estimates that are 

difficult to interpret under model mis-specification. It is thus of great interest to investigate 

methods that do not rely on correct model specification and are applicable to the survival 

setting where both T and S are subject to censoring.

In this paper, we generalize the work of Parast et al. [5] and propose a novel model-free 

framework for quantifying the proportion of treatment effect explained by surrogate 

information collected up to a specified time, t0, in the survival setting. In addition, we 

propose a robust nonparametric procedure to estimate the defined quantity using censored 

data and a perturbation-resampling procedure for inference. To increase efficiency, we also 

propose parallel augmented estimates that take advantage of baseline covariate information. 

Our proposed definition and estimation procedure is the only available method to 

accommodate survival settings where individuals may experience the primary outcome of 

interest or be censored before the surrogate marker is measured (other than methods that 

suggest disregarding individuals), a situation that is quite common in practice. We perform a 

simulation study to examine the finite sample performance of our proposed procedures and 

illustrate the proposed procedures by investigating two potential surrogate markers for 

diabetes using data from the Diabetes Prevention Program.

2. Setup and Definitions in a Causal Inference Framework

Let G be the binary treatment indicator with G = A for treatment A and G = B for treatment 

B and we assume throughout that subjects are randomly assigned to a treatment group at 

baseline. Let T denote the survival time of interest and S denote the surrogate marker value 

measured at time t0. Without loss of generality, we assume that S only takes positive values 

(if not, we may simply exponentiate S). To study this problem under the causal inference 

framework, we use potential outcomes notation such that T(g) and S(g) denote the survival 

time and the surrogate marker value under treatment G = g. That is, T(A), T(B), S(A) and S(B) 

denote the survival time under treatment A, survival time under treatment B, surrogate 

marker value under treatment A and surrogate marker value under treatment B, respectively. 

We assume that S(B) and S(A) have the same support. In practice, we can only potentially 

observe (T, S) = (T(A), S(A)) or (T(B), S(B)) for each individual depending on whether G = A 
or B. Throughout, we define the treatment effect, Δ(t), as the difference in survival rates by 

time t under treatment A versus under treatment B,

where t > t0. We consider a setting where individuals may be censored or experience the 

primary outcome before t0 and thus, S may not be observable for these patients. For 

simplicity, we assume that the surrogate marker cannot be measured after the primary 

outcome occurs, which is a reasonable assumption if, for example, the primary outcome is 

death, but discuss this assumption further in Section 6.
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Our analytic objective is to study the extent to which the surrogate information available at 

time t0 captures the true treatment effect Δ(t). It is important to consider whether information 

concerning the primary outcome observed before t0 should be considered as part of the 

surrogate information available at t0. We argue that this information should indeed be 

considered as part of the surrogate information. That is, in this paper, we define surrogate 

information at t0 as the combination of primary outcome information before t0 and surrogate 

marker measurements collected at t0 for those still being observed. We take this approach 

because even in the highly optimistic situation where one were to identify S, measured at t0, 

as a valid surrogate marker that can be used to estimate and test for a treatment effect, it is 

unlikely that one would completely disregard primary outcome information that is observed 

up to t0. It is more sensible to envision that one uses both primary outcome information 

before t0 and surrogate marker measurements at t0 to estimate the treatment effect, thus this 

combination of information is our definition of surrogate information at t0 throughout this 

paper. Specifically, we consider the surrogate information available at t0 as

Further motivating this definition is the fact that it is difficult to consider a reasonable 

alternative to this approach. For example, one potential alternative would be to restrict 

estimation to only those who are still under observation at t0 (i.e. removing individuals who 

experience the primary outcome before t0) [12, 17]. However, it does not seem desirable to 

assess surrogacy on only a selected subset of survivors systematically different from the 

original population, nor does it seem reasonable to disregard observed information on T 
before t0 when the goal is to quantify the treatment effect on T. Further discussion on the 

choice of surrogate information can be found in Section 6.

We aim to define the proportion of treatment effect explained by Qt0 by contrasts between 

the actual treatment effect and the residual treatment effect that would be observed if the 

surrogate information available at t0 under treatment A was equal to the surrogate 

information available at t0 under treatment B. That is, we define the residual treatment effect 

by noting that

where qt0 = {ut0, st0} = {u ∧ t0, sI(u > t0)}, and

Thus,  defines the hypothetical difference in survival at 

t if the surrogate information available at time t0, Qt0, in both treatment groups was identical 

to qt0. Interestingly, ΔS(t, t0, st0) only depends on qt0 through st0. An equivalent 
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interpretation of ΔS(t, t0, st0) would be the hypothetical difference in survival at t if both the 

survival distribution up to t0 and the distribution of the surrogate marker at t0 among those 

who survived to t0 were the same in the two treatment groups. This quantity summarizes the 

residual treatment effect that cannot be explained by the surrogate information available at t0 

and would be expected to equal zero for a perfect surrogate marker.

However,  is generally not identifiable since S(A) and S(B) cannot both be 

observed simultaneously. To overcome this difficulty, we further assume that

(1)

(2)

Under assumptions (1) and (2),

where for g = A,B,

To consider the residual treatment effect in a population, we may consider st0 as a realization 

from a random distribution t0 and define the residual treatment effect as

The choice of the distribution of t0 depends on the specific context. For example, if 

treatment B is a placebo, then we may be interested in examining the residual treatment 

effect quantity when treatment A has no effect on the surrogate marker information at t0, i.e., 

when the distribution of the surrogate information at t0 under treatment A is the same as that 

under treatment B. In this case,

and

Parast et al. Page 5

Stat Med. Author manuscript; available in PMC 2018 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

(4)

where Fg(· | t0) is the cumulative distribution function of S(g) conditional on T(g) > t0. Here, 

treatment group B, the placebo group, serves as the reference distribution for the definition 

of ΔS(t, t0). Alternatively, when neither treatment A nor treatment B is a natural reference 

group, one may be interested in examining the residual treatment effect when the 

distributions of the surrogate information at t0 in both groups are identical to that of a 

mixture population from the two groups. For example, in this case we may let

and

(5)

For a given choice of ΔS(t, t0), the proportion of treatment effect explained by the surrogate 

marker can be expressed using a contrast between Δ(t) and ΔS(t, t0):

(6)

In this paper, we focus on nonparametrically estimating this proportion using censored data. 

Informally, we use RS(t, t0) to measure the extent to which the surrogate marker captures 

information about the treatment effect on survival by comparing the total treatment effect 

with the hypothetical treatment effect when there is no difference in surrogate information 

up at t0. The approach to define the proportion of treatment effect explained based on 

contrasts between the actual treatment effect and the residual treatment effect was proposed 

in a non-survival setting in Wang & Taylor [4] and further developed in Parast et al. [5]. Our 

definition generalizes their proposed approach to a setting where the outcome may be a 

time-to-event outcome, individuals may be censored, and individuals may not have surrogate 

marker information available because they either experienced the primary outcome or were 

censored before the time of surrogate marker measurement.
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Remark—This definition of the proportion of the treatment effect explained by the 

surrogate marker does not guarantee that the resulting RS(t, t0) is always between 0 and 1. 

However, one set of sufficient conditions similar to those given in Wang & Taylor[4] is

(C1) ψA(t|s, t0) is a monotone increasing function of s;

(C2) P(S(A) > s, T(A) > t0) ≥ P(S(B) > s, T(B) > t0) for all s;

(C3) ψA(t|s, t0) ≥ ψB(t|s, t0) for all s;

where the first condition implies that the surrogate marker at time t0 is “positively” related to 

the survival time; the second condition implies that there is a positive treatment effect on the 

surrogate marker and the third condition suggests that there is a non-negative residual 

treatment effect beyond that on the surrogate marker. For (C1), 1/S can be used to replace S 
if the surrogate markers is “negatively” associated with the survival time. In Appendix A in 

the Supplementary Materials, we show that under conditions (C1)–(C3), 0 ≤ ΔS(t, t0) ≤ Δ(t) 
and 0 ≤ RS(t, t0) ≤ 1.

3. Nonparametric estimation of the proportion of treatment effect explained

The quantity RS(t, t0) depends on the selection of the reference distribution t0. When the 

treatment group B represents standard care or a placebo, the ΔS(t, t0) definition (4) seems 

intuitive. However, when neither group is a natural reference group, a new distribution may 

be considered such as the one used for the ΔS(t, t0) definition (5). For simplicity, we focus on 

the development of an estimation and inference procedure for the definition based on (4); 

however, parallel procedures would be applicable for other choices of a reference 

distribution.

We assume that data are collected from a randomized clinical trial (RCT) and S is measured 

post baseline. Due to censoring, the observed data consist of {(Xgi, δgi, Sgi), i = 1, …, ng; g 
= A,B}, where Xgi = min(Tgi,Cgi), δgi = I(Tgi < Cgi), Cgi denotes the censoring time, and Sgi 

denotes the surrogate marker information measured at time t0, for g = A,B, for individual i. 
We assume that (Tgi, Sgi) ⊥ Cgi. Throughout, we estimate the treatment effect Δ(t) = P(T(A) 

> t) − P(T(B) > t) as

where  is the Kaplan-Meier estimator of survival for censoring for g = A,B. Note that 

this estimator is asymptotically equivalent to the difference of two Kaplan-Meier estimators 

for the survival time (see Appendix B in the Supplementary Materials).

3.1. Nonparametric estimator of the proportion of treatment effect explained

To estimate ΔS(t, t0) as defined in (4), we need to estimate
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Note that ψA(t |s, t0) = P(TAi > t | XAi > t0, SAi = s) given our earlier assumption that (Tgi, 
Sgi) ⊥ Cgi. We propose to use a nonparametric kernel Nelson-Aalen estimator to estimate 

ψA(t | s, t0) as ψ̂
A(t | s, t0) = exp{−Λ̂

A(t | s, t0)}, where

is a consistent estimate of ΛA(t | s, t0) = −log[ψA(t | s, t0)], YAi(t) = I(XAi ≥ t), NAi(t) = 

I(XAi ≤ t)δi, K(·) is a smooth symmetric density function, Kh(x) = K(x/h)/h, γ(·) is a given 

monotone transformation function, and h is a specified bandwidth. To obtain an appropriate 

h, we require the standard undersmoothing assumption of  with u ∈ (1/4, 1/2) in 

order to eliminate the impact of the bias of the conditional survival function on the resulting 

estimator. We first use the bandwidth selection procedure given by Scott [18] to obtain hopt; 

and then we let  for some c0 ∈ (1/20, 3/10) to ensure the desired rate for h. In all 

numerical examples, we chose c0 = 0.11. Since FB(s | t0) = P(SBi ≤ s | XBi > t0), we 

empirically estimate FB(s | t0) using all subjects with XBi > t0 as

Subsequently, we may construct an estimator for ΔS(t, t0) as

and R̂
S(t, t0) = 1 − Δ̂

S(t, t0)/Δ̂(t). In Appendix B in the Supplementary Materials, we show 

that under mild regularity conditions Δ̂S(t, t0) is a consistent estimator of ΔS(t, t0) and that as 

nA, nB → ∞,

where n = nA + nB. It then follows that R̂
S(t, t0) is a consistent estimator of RS(t, t0) and, by 

the delta method,  converges weakly to a mean zero normal 

distribution with variance .
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3.2. Augmentation for improved efficiency using baseline covariates

Recent work has shown that augmentation can lead to improvements in efficiency by taking 

advantage of the association between baseline information, Z, and the primary outcome [19, 

20, 21]. To investigate whether it is possible to gain efficiency through augmentation in this 

setting we propose the augmented estimates:

(7)

and

where Zgi, i = 1, 2, ···, ng are i.i.d. random vectors of baseline covariates from treatment 

group g and h(·) is a basis transformation given a priori. Due to treatment randomization, 

 converges to zero in probability as the sample size goes 

to infinity and thus the augmented estimator converges to the same limit as the original 

counterparts. We propose to select  such that the variance of (Δ̂(t)AUG, Δ̂
S(t, t0)AUG)′ is 

minimized. That is,  = (Ξ12)(Ξ22)−1 where

and thus we can obtain Δ̂(t)AUG by replacing  with a consistent estimator, 𝒜̂. We 

approximate  using a perturbation resampling approach described in Section 4. Note that 

this augmentation approach augments each component of R̂
S(t, t0), Δ ̂(t) and Δ̂

S(t, t0). 

Alternatively, one could consider augmenting R̂
S(t, t0) directly using a single basis 

transformation.

3.3. Incremental value of surrogate marker S measurements at t0

Since our definition of ΔS(t, t0) considers the surrogate information as a combination of both 

S information and T information up to t0, a logical inquiry would be how to assess the 

incremental value of the S information in terms of the proportion of treatment effect 

explained, when added to T information up to t0. If the quantity RS(t, t0) reveals that a large 

proportion of the treatment effect is explained by information at t0, it would be important to 

know how much of that quantity is attributable to S information. If most of the surrogacy is 

due to T information up to t0, then it may not be necessary to measure and incorporate S 
information. Similar to our definition of ΔS(t, t0) in Section 2, we define the proportion of 
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the treatment effect explained by T information up to t0 only as RT (t, t0) = 1 − ΔT (t, t0)/

Δ(t), where

and (d) = P(ℐ = d) is the probability mass function for a binary random variable ℐ.

As with ΔS(t, t0), the choice of  depends on the specific context. We will continue to 

assume, without loss of generality, that treatment B is a placebo group and thus it is 

reasonable to consider (1) = P(T(B) > t0) as the reference distribution. It follows that

Although one would generally expect that the proportion of treatment effect explained by 

both S and T information up to t0 to be at least as big as the proportion of treatment effect 

explained by T information up to t0 alone (i.e. RS(t, t0) ≥ RT (t, t0)) implying ΔT (t, t0) ≥ 

ΔS(t, t0)), this is only guaranteed to hold under certain conditions. Specifically, we note that

and therefore ΔT (t, t0) − ΔS(t, t0) ≥ 0 if and only if

Sufficient conditions for the inequality above are (C1) and

These conditions are also required to ensure that we are not in a situation known as the 

surrogate paradox [22]. When these conditions hold, it would be of interest to quantify the 

incremental value of S information as

(8)
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To estimate RT (t0), we may employ the IPW estimator R̂
T (t, t0) = 1 − Δ̂

T (t, t0)/Δ̂(t) where 

Δ̂T (t, t0) = ϕ̂B(t0) ϕ̂A(t)/ϕ̂A(t0) − ϕB̂(t) and  for g = A,B. 

Subsequently, we may construct a plug-in estimator for IVS(t, t0) by replacing Δ(t),ΔS(t, t0), 
and ΔT (t, t0) with Δ̂(t), Δ̂

S(t, t0), and Δ̂
T (t, t0), respectively.

3.4. Extension to restricted mean survival time

The methods described in this paper focus on a setting where the treatment effect is defined 

as the difference in survival rates at time t, Δ(t), also referred to as the risk difference at time 

t. While this quantity is frequently used as the effect measure in RCTs with survival 

outcomes [23, 24, 25] due to its simplicity and interpretability, alternative effect measures 

might be of interest. One alternative option is the hazard ratio since it is often used in 

practice as an effect measure. However, it may not be desirable to measure surrogacy based 

on the hazard ratio since it is not well defined when the proportional hazards assumption 

fails and as such, the associated quantification of surrogacy would not be interpretable. We 

thus recommend model free effect measures that can always be estimated non-

parametrically. One such measure that has been used frequently in practice is based on the 

restricted mean survival time (RMST) [26, 27, 28]. Our proposed approach can be easily 

extended to the setting where the treatment effect is quantified as the difference in the 

RMST by time t, defined as

which is also the area between the two survival curves between 0 and t [29]. Specifically, 

ΔS(t, t0) would be replaced by

where

Consequently, the proportion of treatment effect explained by the surrogate marker can be 

defined based on ΔRMST,S(t, t0) and Δ RMST (t) i.e. RRMST,S(t, t0) = 1 − Δ RMST,S(t, t0)/
Δ RMST (t). Parallel estimation procedures can be used as described in Section 3.1. For 

example, Δ RMST (t) and Δ RMST,S(t, t0) can be estimated by  and 

, respectively.
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4. Inference and Variance Estimation using Perturbation-Resampling

We propose to estimate the variability of our proposed estimators and construct confidence 

intervals using a perturbation-resampling method to approximate the distribution of the 

estimators. Specifically, let  be n × D 
independent copies of a positive random variables V from a known distribution with unit 

mean and unit variance, such as the standard exponential distribution. Let

and

where  and  is the Kaplan-Meier estimator of 

survival for censoring with weights  for g = A,B. Then one can estimate the distribution 

of

(9)

by the empirical distribution of

(10)

That is, one can approximate the variance of (9) with the empirical variance of (10), denoted 

as Σ̂. To construct a 100(1 − α)% confidence interval for RS(t, t0), one can calculate the 

100(α/2)th and 100(1 − α/2)th empirical percentile of  or estimate the variance of 

R̂
S(t, t0) − RS(t, t0) by the empirical variance of  and construct the 

corresponding Wald-type confidence interval. An alternative is to employ Fieller’s method 
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for making inference on the ratio of two parameters [30, 31] and obtain the 100(1 − α)% 

confidence interval for RS(t, t0) as

where Σ̂ = (σ̂
ij)1≤i,j≤2 and cα is the 100 × (1 − α)th percentile of

The theoretical justification for the perturbation-resampling procedure is provided in 

Appendix C in the Supplementary Materials.

The perturbed samples can also be used to construct the augmented estimators Δ̂(t)AUG and 

Δ ̂
S(t,t0)AUG, defined in (7), by replacing  with 𝒜̂ = (Ξ̂

12)(Ξ̂
22)−1, where Ξ̂

12 is the 

empirical covariance of

and Ξ̂
22 is the empirical variance of

The estimator R̂(t, t0)AUG can be constructed accordingly.

5. Numerical Studies

5.1. Simulation Studies

We conducted simulation studies under two main settings to assess the performance and 

validity of our proposed estimators and inference procedures. In both settings, data were 

generated such that individuals may experience the primary outcome or be censored before 

t0 and thus, S is only measured on individuals still under observation at t0. Within each 

setting we examined results where nA = nB = 1000 and nA = nB = 400. Throughout, we use a 

normal density kernel, t = 1, t0 = 0.5, and the results summarize 1000 replications. For all 

estimates, we estimate variance using our proposed perturbation approach and construct 
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confidence intervals using the normal approximation, quantiles of the perturbed values and 

Fieller’s method (for RS(t, t0) only).

In the first simulation setting, Setting (i), data were generated as:

and Z(A) and Z(B) were generated from a N(0, 1) distribution and censoring in both groups 

was simulated as C ~ Exp(0.5), where S(g) is only observable if T(g) > t0 and C > t0. In this 

setting, Δ(t) = 0.19, ΔS(t, t0) = 0.05, RS(t, t0) = 0.75, P(T(A) > t) = 0.51, P(T(B) > t) = 0.32, 

P(T(A) > t0) = 0.69, P(T(B) > t0) = 0.56, E(S(A)|T(A) > t0) = 3.35, E(S(B)|T(B) > t0) = 4.27, and 

29% and 25% of individuals in treatment group A and treatment group B are censored 

before t, respectively. The top portion of Table 1 shows the results from this setting when nA 

= nB = 1000. These results show that in finite samples the proposed estimates have very 

small bias and adequate coverage, the standard error estimates obtained from the 

perturbation-resampling procedure are close to the average standard error estimates, and 

augmentation provides some efficiency gain.

In the second simulation setting (ii), data were generated as:

and Z(A) and Z(B) were generated from a N(0, 1) distribution and censoring in both groups 

was simulated as C = B * e1 + (1 − B) * e2, where B ~ Bernoulli(0.5), e1 ~ Exp(0.5), e2 ~ 

Exp(0.3). In this setting, Δ(t) = 0.27, ΔS(t, t0) = 0.11, RS(t, t0) = 0.60, P(T(A) > t) = 0.87, 

P(T(B) > t) = 0.61, P(T(A) > t0) = 0.93, P(T(B) > t0) = 0.75, E(S(A)|T(A) > t0) = 4.16, E(S(B)|
T(B) > t0) = 4.56, 30% and 25% of individuals in treatment group A and treatment group B 

are censored before t, respectively. The bottom portion of Table 1 shows the results from this 

setting when nA = nB = 1000. Similar to setting (i), these results show that our proposed 

estimate performs well in finite samples; specifically, the bias is very small, the coverage is 

adequate, the standard error estimates obtained from the perturbation-resampling procedure 

are close to the average standard error estimates, and augmentation provides some efficiency 

gain. For comparison, the estimate of Lin et al. [12] in this setting was −0.13 using Cox 

models and −0.40 using AFT models. In addition, we simulated data in this same setting 

with the exception that censoring in both groups was simulated as C = exp{N(4, 1)}; with 

this change, the estimate of Lin et al. [12] when nA = nB = 1000 was −0.06 using Cox 

models and −0.76 using AFT models while the estimates from our proposed procedure look 

almost identical to those shown in Table 1. The fact that this model-based approach a) 

provides a negative estimate of the proportion of treatment effect explained by the surrogate 
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and b) provides two rather different estimates when only the censoring distribution is 

changed demonstrates the advantage of utilizing a method that does not require strict 

modeling assumptions in settings where they may not hold.

Table 2 shows results for both settings when nA = nB = 400. With a smaller sample size, we 

recommend using the median absolute variance when calculating the empirical variance of 

the perturbed quantities (see Section 4) to guard against the possibility that an outlier 

perturbed sample will dramatically influence the variance estimates. These results show that 

the proposed procedure still performs reasonably well with smaller sample sizes. As 

expected, the variance is larger compared to the large sample size setting but the bias is 

similar and the coverage is adequate.

5.2. Example

We illustrate our proposed procedures using data from the Diabetes Prevention Program 

(DPP), an RCT designed to investigate the efficacy of various treatments on the prevention 

of type 2 diabetes in high-risk adults. At randomization, participants were randomly 

assigned to one of four groups: metformin, troglitazone, lifestyle intervention or placebo. 

The troglitazone arm of the study was discontinued due to medication toxicity. The primary 

endpoint was time to diabetes as defined by the protocol at the time of the visit: fasting 

glucose ≥ 140 mg/dL (for visits through 6/23/1997, ≥ 126 mg/dL for visits on or after 

6/24/2007) or 2-hour post challenge glucose ≥ 200 mg/dL. DPP results showed that both 

lifestyle intervention and metformin prevented or delayed development of type 2 diabetes in 

high risk adults [32, 33].

For this illustration, we focus on the comparison of the lifestyle intervention group 

(N=1024) vs. placebo (N=1030) and we aim to examine the proportion of treatment effect 

explained by two potential surrogate markers: change in log-transformed hemoglobin A1c 

(HBA1C) from baseline to t0 and change in fasting plasma glucose from baseline to t0, 

where we first let t0 = 1 year. We define the treatment effect, Δ(t), as the difference in 

diabetes prevalence at t = 3 years after randomization. Individuals who die before 3 years are 

censored at the last time point where glucose was measured. The estimated probability of 

not developing diabetes by t = 3 years was 0.86 in the lifestyle intervention group and 0.71 

in the placebo group; therefore the treatment effect Δ̂(t) = 0.86 − 0.71 = 0.15. Since we 

define surrogate information at t0 as including diabetes incidence at t0, it is interesting to 

note that 3.7% and 11.5% of participants in the lifestyle intervention group and placebo 

group were diagnosed with diabetes before t0 = 1 year, respectively. The cumulative 

incidence functions by treatment group, as shown in Figure 1(a), clearly demonstrate the 

delayed time to diabetes for the lifestyle intervention group. When stratified by whether the 

individual’s fasting glucose increased or not from baseline to 1 year, Figure 1(b) suggests 

that (1) within each treatment group, increased fasting glucose appears to be negatively 

associated with the outcome and (2) the differentiation between the two glucose groups, 

within each treatment group, is larger for the lifestyle intervention group compared to the 

placebo group.

Results from estimating the proportion of treatment effect explained by each surrogate are 

shown in Table 3(a). Using our proposed procedure, the estimated residual treatment effect, 
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Δ̂
S(t, t0), is 0.077 when the surrogate information at 1 year post-baseline consists of 

information about the change in HBA1C from baseline to 1 year and diabetes incidence up 

to 1 year and the proportion of treatment effect explained by this surrogate information, 

RS(t, t0), is 48.2%. Examining change in fasting plasma glucose, the estimated residual 

treatment effect is 0.046 when the surrogate information at 1 year post-baseline consists of 

information about the change in fasting plasma glucose from baseline to 1 year and diabetes 

incidence up to 1 year and the proportion of treatment effect explained by this surrogate 

information is 68.7%. To determine the incremental value of the information about change in 

HBA1C and fasting plasma glucose, we examined the proportion of treatment effect 

explained by diabetes incidence information only up to 1 year post-baseline which was 

estimated to be 47.8%. Therefore, the incremental value of change in HBA1C was 

negligible, while the incremental value of change in fasting plasma glucose was 21.0% (SE= 

5.9%). Our application of the proposed procedures to examine surrogate markers shows that 

fasting plasma glucose appears to capture more of the treatment effect than HBA1C, 

particularly when considered in terms of incremental value when added to diabetes 

incidence information at 1 year post-baseline.

To investigate how the surrogacy assessment may vary over t0, we present the results for t0 = 

2 years in Table 3(b). When the surrogate information at 2 years post-baseline consists of 

information about the change in HBA1C from baseline to 2 years and diabetes incidence up 

to 2 years, the estimated proportion of treatment effect explained by this surrogate 

information, RS(t, t0), is almost 90%. When examining fasting plasma glucose, this quantity 

is 96.9%. As when t0 = 1 year, the incremental value of HBA1C information is smaller than 

that for fasting plasma glucose, 1.9% versus 8.8%. Note that we would expect the RS(t, t0) 

and RT (t, t0) to generally increase as t0 increases, but not necessarily for IVS(t, t0).

To examine whether efficiency could be gained through augmentation, we also calculated 

our proposed augmented estimates when t0 = 1 year using the available baseline covariates: 

age group (less than 40, 40–44,45–49,50–54,55–59,60–64,65 and older), body mass index 

category (km/m2 units, < 26, ≥ 26 to < 28, ≥ 28 to < 30, ≥ 30 to < 32, ≥ 32 to < 34, ≥ 34 to < 
36, ≥ 36 to < 38, ≥ 38 to < 40, ≥ 40 to < 42, and ≥ 42), self-reported race/ethnicity 

(Caucasian, African American, Hispanic, other), and gender. The resulting estimates for 

change in HBA1C were Δ̂(t)AUG = 0.15(SE = 0.019), Δ̂
S(t, t0)AUG = 0.078(SE = 0.017), and 

R ̂
S(t, t0)AUG = 0.48(SE = 0.10). The resulting estimates for change in fasting plasma glucose 

were Δ̂(t)AUG = 0.15(SE = 0.019), Δ ̂
S(t, t0)AUG = 0.05(SE = 0.02), and R̂

S(t, t0)AUG = 

0.69(SE = 0.10). That is, in this particular example, the use of baseline covariates through 

augmentation leads to little to no improvement in efficiency.

To illustrate the use of an alternative treatment effect quantity, the restricted mean survival 

time (RMST), we estimated RRMST,S(t, t0) as described in Section 3.4 when t0 = 1 and t = 3. 

For change in HBA1C, R̂ RMST,S(t, t0) = 0.69 while for change in fasting plasma glucose R̂

RMST,S(t, t0) = 0.75. Thus, this quantity similarly identifies fasting plasma glucose to be 

slightly better, in terms of surrogacy, compared to HBA1C.

Our application of the proposed procedures to examine surrogate markers shows that fasting 

plasma glucose appears to capture more of the treatment effect than HBA1C, particularly 
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when considered in terms of incremental value when added to diabetes incidence 

information at 1 year post-baseline.

6. Discussion

The identification and validation of surrogate markers is an important and challenging area 

of research. Valid surrogate markers that could be used to replace the primary outcome or 

used in combination with primary outcome information have the potential to lead to gains in 

efficiency in terms of design, implementation, estimation and testing. In this paper we have 

proposed a novel model-free framework for quantifying the proportion of treatment effect 

explained by surrogate information collected up to a specified time in the survival setting 

and a robust nonparametric procedure for making inference. Our proposed methods also 

have the advantage of allowing the surrogate marker S to be not observable at time t0. An R 

package implementing the methods described here, called Rsurrogate, is available on 

CRAN.

The simulation study shows that the proposed inference procedure has satisfactory empirical 

performance for moderate sample sizes. When the sample size becomes much smaller, these 

procedures which are based on asymptotic normality approximations would still lead to 

reliable inference for ΔS(t, t0) and Δ(t). However, the asymptotic normality approximation of 

RS(t, t0), which involves the ratio of ΔS(t, t0) and Δ(t), would likely be less reliable and the 

proposed inference method may not be very accurate.

In this paper, we consider the “surrogate information at t0” to be a combination of both 

primary outcome information observed up to t0 and S information at t0 for those who have 

not yet experienced the event. This decision warrants further discussion. There are generally 

two quite different motivations behind examining the surrogacy of a biomarker S: (i) the 

surrogacy of S could potentially shed light on the underlying mechanism of the disease; and 

(ii) S could potentially be used for designing more efficient future trials. For (i), the 

“surrogacy” intrinsic to the biomarker is more important and mixing the information 

contained by the biomarker with T information up to t0 may not be desirable. In this case, 

we may quantify the “surrogacy” based on the incremental value quantity measure proposed 

in Section 3.3. It is important to also note that directly measuring the surrogacy of S may not 

be feasible if patients experience a terminal event prior to the measurement of S. Removing 

those subjects without S measured would lead to bias. We are primarily interested in setting 

(ii) under which survival information available at t0 may be a valuable component of the 

“surrogate information” used to gauge the true treatment effect in a future trial. Furthermore, 

within our framework, one is able to overcome the challenge of S not being observable for 

those who experience the primary outcome prior to t0.

When T is the time of a non-terminal primary outcome such as time until diabetes diagnosis, 

there are two important considerations. First, competing risks must be accounted for in 

estimation since death could censor the observation of the primary outcome. Specifically, 

one would censor an individual at the time of death and apply the procedures proposed 

above. Second, it may be possible for the surrogate marker to still be observed after the 

primary outcome occurs if individuals are still under observation in the study. However, 
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depending on the setting, it may not be appropriate to incorporate this surrogate marker 

information when estimating the proportion of treatment effect because treatment decisions 

made after the primary outcome occurs may affect the surrogate marker measurement in 

ways that would make the proportion of treatment effect estimate uninterpretable. On the 

other hand, if the non-terminal primary outcome is an outcome that is not easily observed 

and/or requires expensive, invasive or time-intensive testing to determine whether it 

occurred, then use of a surrogate marker that may be measured after the event occurs may be 

of interest.

In addition, our proposed definitions require Assumptions (1) and (2), which can be 

interpreted as the surrogate information under treatment A would not affect the distribution 

of T under treatment B, if the surrogate information under treatment B is given. It seems 

reasonable to expect these assumptions to hold in practice, but further work is needed to 

understand how their violation may affect the results. We also require conditions (C1)-(C3) 

to ensure that 0 ≤ RS(t, t0) ≤ 1. These conditions are parallel to conditions required for 

identifiability in most existing surrogate marker literature, discussed in detail in Vander 

Weele [22]. Violations of these conditions may lead to a surrogate paradox situation. While 

these conditions are untestable, future work examining measures for assessing the risk of the 

surrogate paradox, such as those proposed by Elliott et al. [34], would be very useful.

Lastly, a limitation of our proposed approach is the theoretical condition that the supports of 

S(A) and S(B) are equivalent. In practice, the empirical supports may not completely overlap 

and some type of transformation or extrapolation of the relevant nonparametric estimators 

may be needed. However, when there is substantial non-overlap between two supports, 

caution is needed in interpreting the results.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cumulative incidence distribution by treatment group (lifestyle versus placebo) in (a) and 

further stratified by whether fasting glucose had increased or not from baseline to 1 year in 

(b) for the DPP data.
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